안녕하세요 벼랑끝입니다.
프레임 피로해석 실험을 준비하고 있는데, 역시 보통일은 아니군요...
대충하면야 금방 하겠지만, 아무래도 중요한 사안이다 보니, 실험 방법에 대해
계속 고민하고 있습니다.
아마도 실험은 '용접부 바로 옆'과 비용접부위와의 경도 차이, 인장강도차이,
프레임의 탄성한도 측정 및 피로비를 적용하여
탄성한도의 50%정도의 힘을 프레임에 가하여 몇 회 반복에서 프레임의 크랙이
발생하는지...알아보려고 생각중입니다.
이미 학부 논문 프로젝트가 아니군요.
시간은 상당히 걸릴 듯 싶습니다.
참 몇가지 알려드릴것이 있습니다.
강 재료(철, 크로몰리등)은 받는 힘의 두배정도를 받을수 있도록 설계하면,
보통 무한 수명이 됩니다. 일반적으로는 피로를 받지 않게 됩니다.
강의 경우 무한수명의 기준을 백만번의 반복하중을 견디는것으로 설정합니다.
백만번을 견딜수있으면 그 이상의 반복하중에서도 파괴가 잘 일어나지 않는다고
합니다.
하지만 비철금속은 일반적으로 무한수명이란게 없다는군요.
특히 알루미늄 같은경우에는 연성이 크기 때문에 허용응력의 1/5 응력 이하의
작은 힘에서도에서도 계속 미소 변형이 일어난다고 합니다.
그래서 강의 경우 백만번을 기준으로 하지만 알루미늄은 5억회의 반복하중을
기준으로 합니다.
하중이 작아도 반복하중이 계속 가해지면 결국 파괴 되기 때문에, 상당히 큰수인
5억회을 적용합니다.
그리고 용접부 바로 옆이 찢어지는건...사실 당연합니다.
용접이란게 사실 그렇습니다. 용접을 하면 그 주변의 취성이 증가하고,
크랙이 생기기 쉬워집니다. 게다가 언더컷(용접부 끝이 파이는 결함)이
생기기 쉽고, 내부 응력이 생깁니다.
게다가 단면적이 급격히 달라지기 때문에 응력이 집중합니다.
용접부를 매끈하게 갈아내는것은 미관상 목적이 아니라,
용접부의 응력 집중을 피하기 위함입니다.
또한 헤드튜브와 탑튜브간은 자전거에서 가장 취약한 부위입니다.
형태상 모든 응력이 집중합니다.
특히 전방충돌의 경우 앞휠은 뒤쪽으로 밀리고, 핸들은 체중에 의해 앞으로 밀립니다.
이때 탑튜브와 헤드튜브 사이에서 급격한 인장력이 발생합니다.
이 인장력이 응력이 집중하는곳이 바로 용접부 옆입니다.
용접없이 자전거를 만드려는 노력은 이 때문에 생깁니다.
문제는 용접시 모재에 가해진 영향과, 후처리입니다.
용접시 용접사의 실력과 용접조건에 따라 모재에 가해진 악영향의 정도는 다릅니다.
또한 후처리를 통해 내부응력과 모재의 변화를 수정할수 있습니다.
또한 소재 자체의 문제입니다. 소재 자체가 튼튼하면, 구조체 역시 당연하게 튼튼해집니다.
학부생이 주제에 이런 큰 사안에 나서는게 아니라고,
전화를 주시는 분들이 있습니다.
걱정이 되서 전화주시는거라고 생각합니다.
다만 엔지니어가 될 사람으로서, 개연성에 의지 할수는 없다는게 제 생각입니다.
이 실험이 끝까지 진행될수도 있고, 중간에 흐지 부지 될수도 있습니다.
많이 부족해서, 실험이 완전히 끝날지 장담은 못드리겠습니다만,
저로서도 좋은 결과가 나오기를 바랍니다.
그럼 안전라이딩 하세요.
프레임 피로해석 실험을 준비하고 있는데, 역시 보통일은 아니군요...
대충하면야 금방 하겠지만, 아무래도 중요한 사안이다 보니, 실험 방법에 대해
계속 고민하고 있습니다.
아마도 실험은 '용접부 바로 옆'과 비용접부위와의 경도 차이, 인장강도차이,
프레임의 탄성한도 측정 및 피로비를 적용하여
탄성한도의 50%정도의 힘을 프레임에 가하여 몇 회 반복에서 프레임의 크랙이
발생하는지...알아보려고 생각중입니다.
이미 학부 논문 프로젝트가 아니군요.
시간은 상당히 걸릴 듯 싶습니다.
참 몇가지 알려드릴것이 있습니다.
강 재료(철, 크로몰리등)은 받는 힘의 두배정도를 받을수 있도록 설계하면,
보통 무한 수명이 됩니다. 일반적으로는 피로를 받지 않게 됩니다.
강의 경우 무한수명의 기준을 백만번의 반복하중을 견디는것으로 설정합니다.
백만번을 견딜수있으면 그 이상의 반복하중에서도 파괴가 잘 일어나지 않는다고
합니다.
하지만 비철금속은 일반적으로 무한수명이란게 없다는군요.
특히 알루미늄 같은경우에는 연성이 크기 때문에 허용응력의 1/5 응력 이하의
작은 힘에서도에서도 계속 미소 변형이 일어난다고 합니다.
그래서 강의 경우 백만번을 기준으로 하지만 알루미늄은 5억회의 반복하중을
기준으로 합니다.
하중이 작아도 반복하중이 계속 가해지면 결국 파괴 되기 때문에, 상당히 큰수인
5억회을 적용합니다.
그리고 용접부 바로 옆이 찢어지는건...사실 당연합니다.
용접이란게 사실 그렇습니다. 용접을 하면 그 주변의 취성이 증가하고,
크랙이 생기기 쉬워집니다. 게다가 언더컷(용접부 끝이 파이는 결함)이
생기기 쉽고, 내부 응력이 생깁니다.
게다가 단면적이 급격히 달라지기 때문에 응력이 집중합니다.
용접부를 매끈하게 갈아내는것은 미관상 목적이 아니라,
용접부의 응력 집중을 피하기 위함입니다.
또한 헤드튜브와 탑튜브간은 자전거에서 가장 취약한 부위입니다.
형태상 모든 응력이 집중합니다.
특히 전방충돌의 경우 앞휠은 뒤쪽으로 밀리고, 핸들은 체중에 의해 앞으로 밀립니다.
이때 탑튜브와 헤드튜브 사이에서 급격한 인장력이 발생합니다.
이 인장력이 응력이 집중하는곳이 바로 용접부 옆입니다.
용접없이 자전거를 만드려는 노력은 이 때문에 생깁니다.
문제는 용접시 모재에 가해진 영향과, 후처리입니다.
용접시 용접사의 실력과 용접조건에 따라 모재에 가해진 악영향의 정도는 다릅니다.
또한 후처리를 통해 내부응력과 모재의 변화를 수정할수 있습니다.
또한 소재 자체의 문제입니다. 소재 자체가 튼튼하면, 구조체 역시 당연하게 튼튼해집니다.
학부생이 주제에 이런 큰 사안에 나서는게 아니라고,
전화를 주시는 분들이 있습니다.
걱정이 되서 전화주시는거라고 생각합니다.
다만 엔지니어가 될 사람으로서, 개연성에 의지 할수는 없다는게 제 생각입니다.
이 실험이 끝까지 진행될수도 있고, 중간에 흐지 부지 될수도 있습니다.
많이 부족해서, 실험이 완전히 끝날지 장담은 못드리겠습니다만,
저로서도 좋은 결과가 나오기를 바랍니다.
그럼 안전라이딩 하세요.
댓글 달기